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On the Distribution of Pseudo-Random Numbers 
Generated by the Linear Congruential Method 

By Harald Niederreiter 

Abstract. The discrepancy of sequences of pseudo-random numbers generated by the 
linear congruential method is estimated, thereby improving a result of Jagerman. 
Applications to numerical integration are mentioned. 

Let m be a modulus with primitive root X, and let yo be an integer in the least 
residue system modulo m with g.c.d.(yo, m) = 1. We generate a sequence yo, Yi, ... 

of integers in the least residue system modulo m by yi+,= Xyi (mod m) for j > 0. 
The sequence xo, xi, * ,defined by xi = y,/m for j t 0, is then a frequently em- 
ployed sequence of pseudo-random numbers in the unit interval [0, 1]. Its elements 
xi may also be described explicitly by xi = { X3yo/m} for j > 0, where { x} denotes 
the fractional part of the real number x. The sequence x0, xl, * has period Q = +(m), 
where 4 is Euler's totient function. 

For a real number a with 0 < a < 1, let A(a) be the number of elements of the 
sequence xo, xl, * , xQ_i lying in the interval [0, a]. We define the discrepancy 
D = supo,x,itA(a)/Q - al which measures the deviation from the uniform distribu- 
tion. Jagerman [2] has shown that D < (4/irX(3 log m)/Q)"I2. His method is based on 
an estimate of the discrepancy in terms of certain trigonometric sums. In the present 
note, we shall show that a much simpler method yields a considerably sharper 
estimate for D (see Theorem 2). We prove also some related results. 

For a from above and a positive integer k, let A"'k(a) be the number of rationals 
i/k, 1 < i < k, g.c.d.(i, k) = 1, lying in the interval [0, a]. 

THEOREM 1. For any positive integer k, we have 

D (k) = SUp 
A (a) _ 

O(kE ) forevery e > 0. 
0:5 a 4) (k) 

Proof. For an arbitrary positive integer r, we consider the sequence of rationals 
l /r, 2/r, ... , r/r. There are exactly [ra] elements of this sequence in the interval [0, a]. 
We now count these elements by a second method. We write the rationals j/r, 
1 < j < r, in reduced form and then count, for each positive divisor d of r, the result- 
ing rationals with denominator d lying in [0, a]. We thereby arrive at the identity 

(1) [ra] = E A(d)(a) for all r > l and all a, 0 < a < 1. 
d I r 

Applying the Moebius inversion formula to (1), we obtain 
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A() (a= Eu(d)[ k] for all k > 1 and all o1, O < 1. 

Consequently, we have, for all a with 0 < ce < 1 

A (k) (a) I (1: k 
4),a 

(2) | k) a = ,(k) E d a 4+(k) dk d d 

= 1 |( u (d){ a}k 

Therefore, D(k) < (l/+(k)) d Ik I(d)l = g(k). Now, g(k) is a multiplicative number- 
theoretic function. To prove that limkcO g(k)k1-' = 0, it will therefore suffice to show 
that limpj,og(p8)(p8)1- = 0, where p8 runs through all prime powers. But 

g(p8)(p8)l-E = 2p-8(1 - l/p)-1 < 4p-8, and we are done. 
Let us now return to the sequence xo, xi, x Q-, Xl. Since there is a primitive root 

modulo m, we must have m = 2, 4, p8, or 2p8, where p is an odd prime and s > 1. 
For m = 2 and 4, we readily get D = 2 and D = X, respectively. For the remaining 
cases, we have the following estimates. 

THEOREM 2. If m = p8, then D < 1/Q. If m = 2p, then D < 2/Q. 
Proof. We note that the sequence xo, xi, * *, xQ_j runs, in some order, through 

all the rationals i/m with 1 < i < m and g.c.d.(i, m) = 1. Therefore, A(a) = A')(a), 
and we can apply (2). For m = p8, we get, for all a with 0 < a < 1 

A(a) 1 1 
Q =Q{aJ 

,a Q 

For m = 2p, we get, for all a with 0 < a < 1 

A (a) _ 1 m n'rn > rn1 2 
Q Q {m 2 a} a1} 2paW Q 

It is well known (see for instance [4]) that the discrepancy D of any sequence in 
[0, 1] with Q elements must satisfy D > 1/2Q. Therefore, no substantial improvement 
of Theorem 2 is possible. We refer to [1] for results on the distribution of pseudo- 
random numbers in the case m = 28 with s > 3 (of course, X is then not a primitive 
root any more). 

Theorem 2 implies two error estimates for numerical integration based on the 
sequence xo, x,, . , XQ-1. First,-we apply Koksma's inequality [3] which states 

that, for any sequence ao, al, * * *, aNl in [0, 1] with discrepancy DN and any integrand f 

with bounded variation V(f) on [0, 1], one has 
1 N-1 I 

1: f(a 10 f(x) dx ? V(I) DN. 
N i=0 a)- 

The notion of discrepancy is usually defined in terms of the counting functions relative 
to the half-open intervals [0, a,) 0 < a < 1. But it is easily seen that this is identical 
with our concept of discrepancy in which we used the counting functions relative to 
the closed intervals [0, a], 0 < a < 1. 

COROLLARY 1. Let f be a function with bounded variation V(f) in [0, 1]. Then 

1Q-1 -i 
1E f (xi) -j f(x) dx| < 

c 
V(f), Q i=0 lJfor 

where c ='forrm = 2 and 4, c = 1 for m = p8,and c = 2for m = 2p8. 
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Finally, we apply an inequality given by the present author in [4]: If ao, al, , 
aNl is a sequence in [0, 1] with discrepancy DN and f is continuous in [0, 1] with 
modulus of continuity w, then 

1N-1i 

1 X, (a f(X) dx) -x w(DN). 

For the convenience of the reader, we include the short proof. We may assume 
without loss of generality that 0 < ao < a, < ... < aN ? 1. We know then from 
[5, Eq. (4)], [6, Theorem 1] that DN is also given by 

DN max max~ ai - a- 
i=O, ,N-i N N I 

Now, 

r1 N-1 Pi1/ 
f(x) dx = f(x) dx 

N- i O /N 

= : E ANO(t.) with - < i < for 0 < i < N - 1. 
j=0 NN N 

Therefore, 

N-1 1 1 N-1 
N f(ai - J(x) dx = N (f(ai)- (Qj)) 

N (j= ) 0N i=0 

But ai - jj < max(lai - i/NN, ai - (i + 1)/NJ) < DN for 0 < i < N - 1, hence 
lf(ai) - f(j)J < w(DN) for 0 < i < N- 1, and we are done. 

Using the fact that w is a nondecreasing function, we arrive at the following 
consequence. 

COROLLARY 2. Let f be a continuous function in [0, 1] with modulus of continuity c. 
Then 

-zQ-1 1 | CQ Q j f (xi) - f(x) dx<? 

where c has the same meaning as in Corollary 1. 
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